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Abstract. In this work we study how some elementary graph operations
(like the disjoint union) and the collapse of two vertices modify the cut ideal
of a graph. They pave the way for reducing the cut ideal of every graph to
the cut ideal of smaller ones.

To deal with the collapse operation we generalize the definition of cut
ideal given in literature, introducing the concepts of edge labeling and edge
multiplicity: in fact we state the non-classical behavior of the cut ideal.
Moreover we show the transformation of the toric map hidden behind these
operations.

In 2008, Sturmfels and Sullivant [7] generalized a class of toric ideals which
appears in phylogenetics and algebraic statistics [2], via the cut ideals. Cuts are
a key concept in graph theory and combinatorial optimization and monomial cut
ideals have been further studied in [3], [4] and [5]. Geometrically, the cut ideal of
a graph G with e edges comes from the cut polytope Cut�(G), the convex hull
in Re of the cut semimetrics [1].
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Our first aim is the study of the cut ideal of a graph obtained after
identifying two non connected verticies. We call this operation the collapsing
and we denote by G1≡k the graph obtained after the collapsing of the verticies 1
and k. We proved the following result:

Theorem 3.1 (Collapsing rules). Let G be a graph and let {1, k} /∈ E;
one obtains IG1≡k

from IG, using the following rules:

(kill) Kill all the elements in IG having non-feasible variables;
(substitute) Substitute rpf , the variable of RG, with rp, variable of RG1≡k

, in
the ’surviving’ elements of IG.

Moreover using only basic linear algebra and elementary combinatorics,
we also study the change of the cut variety under some elementary graph opera-
tions (relabeling of vertices and edges, change of multiplicity and disjoint union
of graphs) and under the collapse of two non-connected vertices.

As a first example, let us consider the path graph P3, with vertices {1, 2, 3}
and edges {{1, 2}, {2, 3}}. Let us collapse the vertices 1 and 3. The result is a
graph with two vertices and one edge, K2: This edge should be thought of as a
double edge.

The cut ideal follows exactly the same phenomena and for this reason, in
Section 1, we generalize the concept of cut ideal to a graph G with edge multi-
plicities and with non trivial edge labels. In the classical case, the multiplicities
of all the edges are set to be one and the labeling is the canonical labeling (the
label of the edge {i, j} is (i, j)). Otherwise, we are in the non-classical case.

We introduce this generalization to understand collapsing like the previ-
ous one, but anyway we find results also in this more general setting.

In Section 2, we explain how to tackle the non-classical setting. We study
the affine cut varieties, Aff(−), under the elementary operations of clique 0-sum
[7] and disjoint union of two graphs G ⊔H:

Theorem 2.1. Let G be a graph in the classical case.

0) Aff(Sn) is a point for each n ∈ N.
1) Aff(G) ∼= Aff(G,σ) and IG = I(G,σ) for every multiplicity map σ.

Let G and H be graphs in the non-classical case.

2) Aff(G ⊔H) ∼= Aff(G#0H).
3) φG⊔H = φGφH .
4) Aff(G⊔Sn) ∼= Aff(G) and IG⊔Sn = I ′G⊕J , where J is generated only by linear

relations.
5) An arbitrary binomial lies in I(G⊔H) if and only if either it is linear of the form

ra×b − ra×b∗ with a (resp. b) disjoint partitions of the graph G (resp. H)
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or it is non linear with the form

(1) ra1×b1 · · · rah×bh − rah+1×bh+1
· · · ra2h×b2h ,

where

(2) ra1 · · · rah − rah+1
· · · ra2h ∈ I(G,l,A,σ),

and

(3) rb1 · · · rbh − rbh+1
· · · rb2h ∈ I(H,i,B,ρ).

The point of view, we propose, helps to generalize Theorem 2.1 of [7] and
the results in Section 5 of [4].

After defining the collapsed graph G1≡k, in Section 3, we show the main
theorem that gives a pure combinatorial description of the cut ideal of G1≡k from
the ideal of IG in two steps: (kill), where we delete the generators containing non-
feasible variables, and (substitute), where we modify the name of the variables
according to the collapse. The collapse operation we work with is different from
the clique i-sum G#iH of G and H. It is possible to construct every clique i-sum
with a finite number of collapse operations. For this reason, Theorem 3.1 is a
generalization of Theorem 2.1 by Sturmfels and Sullivant [7].

The collapse and the disjoint union operations allow to construct every
graph from more elementary graphs. We wonder if this holds also for the cut
ideals, that is we can reduce the cut ideal of every graph to the cut ideal of
simpler ones: The key is to use Theorem 2.1.5) and Theorem 3.1 as we show in
Example 3.3. Unfortunately it should not be so easy because difficulties arise in
controlling the generators of the collapsing cut ideal in term of the ones of IG as
we show in Example 3.4.

Notation: We denote a graph by a pair G = (VG;EG), with VG = [n].
An edge e in EG with endpoints i and j is denoted by {i, j}. Moreover Kn,
Pn, Cn and Sn denote respectively the complete n-graph, the n-path graph, the
n-cycle graph and the graph with n isolated vertices graph.

1. The generalized cut ideal. Let Πn be the set of disjoint unordered
partitions A|B of [n], that is A ∪ B = {1, 2, . . . , n} and A ∩ B = ∅. A|B is the
same partition as B|A, but it is useful to stress the order, so we denote by
(A|B)∗ = B|A. We define

CutG(A|B) = {{i, j} ∈ EG : i ∈ A and j ∈ B or i ∈ B and j ∈ A}.

Let Rn be K[rA|B : A|B ∈ Πn].

Example 1.1. R4 = K[r1|234, r2|134, r3|124, r4|123, r12|34, r13|24, r14|23, r1234|·].
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Let A be a generic alphabet set. A labeling of E (or of the graph G) is a
surjective map l : E → A.

Example 1.2. The graph K3 could be labelled by the map sending all
the edges to {a}.

There is a canonical labeling c : E → E that maps injectively an edge
{i, j} ∈ E to its endpoints (i, j). Changing the brackets we mean that (i, j) is
now an element of the alphabet A = E. All the classical definitions are in the
canonical labeling.

Let TA be K[s±1
a , t±1

a : a ∈ A].

Example 1.3. Let G be any graph with only one edge EG = {{1, 2}} and
with the canonical labeling (so A = {(1, 2)}), then TE = K[s(1,2), s

−1
(1,2), t(1,2), t

−1
(1,2)].

A multiplicity map of E (or of the graph G) is a map σ : E → Z \ {0}.
The integer σ(e) is called multiplicity of e.

Example 1.4. Any graph G has the trivial multiplicity map setting
σ(e) = 1 for each edge e.

Example 1.5. We assign a multiplicity map to K2 setting σ(1, 2) ∈
Z \ {0}.

Notation: In the previous example we used σ(1, 2) instead of σ({1, 2}).
This simplification is used in all the article.

We define

φ(G,l,A,σ) : Rn → TA,

rA|B 7→
∏

{i,j}∈CutG(A|B)

s
σ(i,j)
l(i,j)

∏

{i,j}∈EG\CutG(A|B)

t
σ(i,j)
l(i,j) .

Roughly speaking, we send the variable rA|B to the product of variables

in TA including s
σ(i,j)
l(i,j) if A|B separates the extremal vertices i and j of the edge

{i, j} and including t
σ(i,j)
l(i,j) otherwise. This explains the names for s, separated,

and t, together.

If the multiplicity map has value in N, then the map φ(G,l,A,σ) has values
in T ′

A = K[sa, ta : a ∈ A].

Example 1.6. In the classical case (that is with the canonical labeling
and the trivial multiplicity) the map φ(G,c,E,1) is

φG : Rn → T ′
E ,
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rA|B 7→
∏

{i,j}∈Cut(A|B)

s(i,j)
∏

{i,j}∈EG\Cut(A|B)

t(i,j).

Observation 1.1. In the classical case the map φG determines G uniquely.

Definition 1.1. Let (G, l,A, σ) be a labelled graph with multiplicity; The
cut ideal of G, I(G,l,A,σ), is the kernel of the map φ(G,l,A,σ). The affine cut variety
of G, Aff(G, l,A, σ), is the affine variety with the coordinate ring Γ(G,l,A,σ) =
Rn/I(G,l,A,σ).

Example 1.7. We study P3 a) in the classical case; b) with trivial mul-
tiplicity but with the labeling given in Example 1.2; c) with the same labeling
but the multiplicity map is σ(1, 2) = −σ(2, 3) = −1. One has:

φP3 : K[r1|23, r2|13, r3|12, r123|·] → K[s(1,2), s(2,3), t(1,2), t(2,3)];

φ(P3,{a}) : K[r1|23, r2|13, r3|12, r123|·] → K[sa, ta].

φ(P3,{a},σ) : K[r1|23, r2|13, r3|12, r123|·] → K[s±1
a , t±1

a ].

and

variable φP3 φ(P3,{a}) φ(P3,{a},σ)

r1|23 s(1,2)t(2,3) sata s−1
a ta

r2|13 s(1,2)s(2,3) sasa = s2a s−1
a sa = 1

r3|12 t(1,2)s(2,3) tasa t−1
a sa

r123|· t(1,2)t(2,3) tata = t2a t−1
a ta = 1

Thus, we have IP3 = (r1|23r3|12 − r123|·r2|13), I(P3,{a}) = (r1|23 − r3|12) ⊕ IP3

and I(P3,{a},σ) = (r2|13 − 1, r123|· − 1, r1|23r3|12 − 1). The classical and the non-
classical cut ideals are, hence, different. Looking at the cut varieties we get that
dim(Aff(P3)) = 3, dim(Aff(P3, {a})) = 2 and dim(Aff(P3, {a}, σ)) = 1.

2. The elementary operations. Since φ(G,l,A,σ) is a toric map then
the cut varieties are toric varieties, thus we associate (see for instance [6]) to
φ(G,l,A,σ) the matrix A(G,l,A,σ) having as columns the exponents of the monomial
image of rA|B for each partition in Πn. (For sake of brevity we write when it is
possible AG instead of A(G,l,A,σ).)
The generators of IG correspond to the elements in the kernel of the linear map
defined by AG.

We want to study which relation there is between elementary operations
on the graph and linear transformations of the matrices AG.

Notation: We remark G#iH is the notation for a clique i-sum of two
graph G and H, that is the gluing of G and H along a specified clique. Moreover,
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the disjoint union of G and H is (G, l,A, σ) ⊔ (H, i,B, ρ) = (G ⊔ H, (l, i), A ⊔
B, (σ, ρ)).

Any disjoint partition of G ⊔H can be written as (AC|BD) where a =
(A|B) is a G-partition and b = (C|D) is a H-partition. So we think it as a
product partition a× b. From a and b it is also possible to construct a× b∗ that
is different from a× b.

Lemma 2.1. Let G be a graph in the classical case. Let E = {e1, . . . , em}
and A = {a1, . . . , ak}. Let σ be a multiplicity map and l : E → A be a labeling
map of G. Then

i) Permuting the name of vertices corresponds to a permutation of the matrix
columns of A.

ii) There exists a unique matrix Mσ such that A(G,σ) = MσAG. Mσ is a block
matrix

Mσ =

(

Iσ 0
0 Iσ

)

where Iσ = diag(σ(e1), . . . , σ(em)).
iii) There exists a unique matrix Rl such that A(G,l,A) = RlAG. This matrix is

2|A| × 2|E| and it has the block form

Rl =

(

Bl 0
0 Bl

)

where Bl = (bi,j) is |A| × |E| and it is defined by b(i,j) = δai,l(ej).

Let G and H be graphs in the non-classical case.

iii.bis) Let l′ be a labeling constructed from l by assigning to the elements in
l−1(ak) a unique element in C = A \ {ak}. Then there exists a unique
matrix Rl′ such that A(G,l′,C) = Rl′AG. This matrix is 2|C| × 2|A| and it
has the block form

Rl′ =

(

Bl′ 0
0 Bl′

)

where Bl′ = (bi,j) is |C| × |A| and it is defined by b(i,j) = δai,l′(aj).
iv) AG⊔H is made of the columns of AG#AH but each repeated twice.
v) AG#0H = AG#AH .

Notation: The columns of AG#AH are constructed mixing the columns
of AG and AH in all the possible ways.

P r o o f. i), ii), iii) and iii.bis) are elementary. Regarding iv), we
observe that for each a and b, respectively G and H-partitions, the G ⊔ H-
partitions a× b and a× b∗ separate and leave together the same edges. v) holds
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because whatever pair of vertices (v,w) ∈ VG×VH we choose for the clique 0-sum
G#0H, one and only one of those partitions a × b and a × b∗ leave the pair on
one size. ✷

Using this matrix tricks we get some information about the cut variety:

Theorem 2.1. Let G be a graph in the classical case.
0) Aff(Sn) is a point for each n ∈ N.
1) Aff(G) ∼= Aff(G,σ) and IG = I(G,σ) for every multiplicity map σ.
Let G and H be graphs in the non-classical case.
2) Aff(G ⊔H) ∼= Aff(G#0H).
3) φG⊔H = φGφH .
4) Aff(G⊔Sn) ∼= Aff(G) and IG⊔Sn = I ′G⊕J , where J is generated only by linear

relations.
5) An arbitrary binomial lies in I(G⊔H) if and only if either it is linear of the

form ra×b − ra×b∗ with a (resp. b) disjoint partitions of the graph G (resp.
H) or it is non linear with the form

(4) ra1×b1 · · · rah×bh − rah+1×bh+1
· · · ra2h×b2h ,

where

(5) ra1 · · · rah − rah+1
· · · ra2h ∈ I(G,l,A,σ),

and

(6) rb1 · · · rbh − rbh+1
· · · rb2h ∈ I(H,i,B,ρ).

P r o o f. φSn sends all variables of Rn (and 1) to 1 ∈ T∅ = K; thus 0)
holds. 1) follows from ii) and 2) follows from iv) and v). 3) is iv) translated
with the homomorphism language.

The first part of 4) is a consequence of 2). For the latter we observe that
for any Sn-disjoint partition (C|D), using 3), r(A|BCD) has the same image of
r(AC|BD) and of all the other possible further combinations. Thus J is generated
by those linear relations and I ′G is constructed from IG by replacing the variable
r(A|B) with r(A|BCD). Using 3) and iv), we obtain 5). ✷

The last item of the previous theorem is a generalization of Theorem 2.1
of [7] and of the results in Section 5 of [4].

Observation 2.1. Example 1.7 shows that 2) is not true for a non-
classical setting.

Example 2.1. One has that IK2 = (0) and IK2⊔K2 = r1|234r3|124 −
r24|13r1234|·,
r1234|·− r12|34, r4|123− r3|124, r2|134− r1|234, r13|24− r14|23. We have no generator in
IK2 to construct IK2⊔K2 using 5). Instead, we use binomials like r1|2−r1|2 ∈ IK2 .
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3. The collapse operation. In this section, we study what happens
to the cut ideals and the cut varieties after collapsing two vertices. In the first
part, we study the simple collapse, and then we will go to the singular one. We
see how the non-canonical labeling and non-trivial multiplicity appear naturally.

This is the collapse operation:

Definition 3.1. Let (G, l,A, σ) be a graph and let {1, k} /∈ E. The graph
obtained by collapsing the vertices 1 and k is denoted by (G1≡k, l

′, A′, σ′). We
define G1≡k = ({1, . . . , k − 1};E′) where E′ is obtained from EG by replacing
{i, k} ∈ EG with {i, 1}, and considering just one repetition; the labeling map l′ is
the same as l, but for all the edges in e ∈ l−1(l(i, k)) we set l′(e) = l(i, 1);

σ′({i, j}) =

{

σ({i, j}) if i 6= 1;

σ({1, j}) + σ({k, j}) otherwise.

We say that the collapse is simple if |EG| = |EG1≡k
|, and singular otherwise.

Only for singular collapse we will have that A′ ( A: in fact we lose one
of the labels of the collapsed edges.

Observation 3.1. When we write (G ⊔ H)k≡k+1 and G#0H we mean
the same thing.

Of course, the collapse is not always a clique 0-sum (see next example).
Instead every clique i-sum can be constructed as a sequence of collapses.

Example 3.1. K2 = (P3)1≡3. This collapse is singular and it produces
the graph with multiplicity given in Example 1.5.

Example 3.2. The singular collapse can involve more than two edges.
For example G1≡5, where

G = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {1, 4}, {5, 2}, {5, 3}, {5, 4}}).

Definition 3.2. A disjoint partition (A|B) is feasible for the collapse of
1 and k if {1, k} ∈ CutKn(A|B).

In other words we require that the collapsed vertices belong both to either
A or B. If p is a feasible partition then rp ∈ Rn is a feasible variable. Moreover,
let p be a disjoint partition of [n− 1], then we denote by pf and pnf the feasible
and the non-feasible lifting to the partitions of [n].

The following theorem shows a pure combinatorial description of the ideal
IG1≡k

from the ideal of IG. This theorem is stated in the classical and non classical
case for simple and singular collapse.
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Theorem 3.1 (Collapsing rules). Let G be a graph and let {1, k} /∈ E;
one obtains IG1≡k

from IG, using the following rules:

(kill) Kill all the elements in IG having non-feasible variables;
(substitute) Substitute rpf , the variable of RG, with rp, variable of RG1≡k

, in
the ’surviving’ elements of IG.

We can construct every graph from some of its subgraphs via disjoint
unions and operations of simple collapse. This idea should hold also for the cut
ideal: The key is to use Theorem 2.1.5) and Theorem 3.1 as we show in the
following example. In contrast, in Example 3.4, we stress that Theorem 3.1 does
not allow to control the generators of the collapsing cut ideal in terms of the ones
of IG.

Example 3.3. We compute IP4 via the cut ideal of P3 ⊔ K2, using a
suitable vertices collapse. We label the vertices of K2 with 4 and 5. We saw in
Example 2.1 that IP3 = (r1|23r3|12− r2|13r123|·) and also that IK2 = (0). We know
how to produce the linear relation between the variables (like ra×b − ra×b∗).

Let us focus on the non linear part. We need to start from an element in
IP3 : for instance we have r2|13r3|12−r2|13r3|12 = 0 ∈ IP3 . and r4|5r45|·−r4|5r45|· =
0 ∈ IK2 . Thus we compose them into

r24|135r354|12 − r2|1354r35|124

obtaining an element of IP3⊔K2 . In similar way, by changing only the element in
IP3 , one obtains also:

r4|1235r12|345 − r12345|r35|124,

r1|2354r35|124 − r12|354r14|235,

r1|2354r135|24 − r2|1354r14|235,

r1|2354r4|1235 − r12354|r14|235.

Moreover, considering the non zero generator r1|23r3|12 − r123|·r2|13 of IP3

and r45|·r45|· − r45|·r45|· ∈ IK2 one has the following element of IP3⊔K2 :

r1|2345r345|12 − r12345|·r2|1345.

Thus, by changing the element in IK2 , one has:

r4|1235r135|24 − r14|235r35|124,

r1|2345r35|124 − r4|1235r2|1345,

r1|2345r35|124 − r12345|·r135|24.

This completes the non linear generators of the cut ideal of IP3⊔K2 .
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We compute IP4 using Theorem 3.1: one collapses the vertices 3 and 5.
Thus one has:

IP4 =







































r13|24r12|34 − r2|134r3|124,

r4|123r12|34 − r1234|r3|124,

r1|234r3|124 − r12|34r14|23,

r1|234r13|24 − r2|134r14|23,

r1|234r4|123 − r1234|r14|23,

r4|123r13|24 − r14|23r3|124,

r1|234r3|124 − r4|123r2|134,

r1|234r3|124 − r13|24r1234|·,

r1|234r12|34 − r1234|r2|134







































.

Example 3.4. Let

G = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}}).

Its cut ideal is

IG =



















































































r13|245r4|1235 − r123|45r24|135, r12|345r24|135 − r13|245r34|125,

r12|345r4|1235 − r123|45r34|125, r12|345r13|245 − r2|1345r3|1245,

r124,35r2|1345 − r12|345r24|135, r124,35r123|45 − r3|1245r4|1235,

r124,35r13|245 − r3|1245r24|135, r124,35r12|345 − r3|1245r34|125,

r14|235r3|1245 − r124,35r23|145, r14|235r123|45 − r23|145r4|1235,

r14|235r13|245 − r23|145r24|135, r14|235r12|345 − r23|145r34|125,

r134|25r23|145 − r14|235r2|1345, r134|25r3|1245 − r12|345r24|135,

r134|25r123|45 − r2|1345r4|1235, r134|25r13|245 − r2|1345r24|135,

r134|25r12|345 − r2|1345r34|125, r134|25r124,35 − r34|125r24|135,

r5|1234r2|1345 − r134|25r12345|·, r5|1234r3|1245 − r124,35r12345|·,

r5|1234r123|45 − r12345|·r4|1235, r5|1234r13|245 − r12345|·r24|135,

r5|1234r12|345 − r12345|·r34|125, r5|1234r14|235 − r15|234r4|1235,

r1|2345r4|1235 − r5|1234r23|145, r1|2345r4|1235 − r14|235r12345|·,

r1|2345r34|125 − r12|345r15|234, r1|2345r24|135 − r13|245r15|234,

r1|2345r4|1235 − r123|45r15|234, r1|2345r123|45 − r12345|·r23|145,

r1|2345r124,35 − r3|1245r15|234, r1|2345r14|235 − r23|145r15|234,

r1|2345r134|25 − r2|1345r15|234, r1|2345r5|1234 − r12345|·r15|234



















































































.
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We collapse the vertices 1 and 5 obtaining K4. The cut ideal of K4 is

IK4 = (r1|234r2|134r3|124r4|123 − r1234|·r23|14r12|34r13|24)

We want to compute it using the Theorem 3.1. We observe that all the generators
of IG contain at least one of the non feasible variables r1|2345, r5|1234, r134|25,
r14|235, r124,35, r12|345, r13|245 and r123|45; hence all of them will be killed. One
has that r15|234r2|1345r3|1245r4|1235 − r12345|·r23|145r125|34r135|24 is in the cut ideal
IG; this element survives because of contains only feasible elements; moreover the
collapsing substitution produces exactly the generator we wanted.

The rest of this section is devoted to the prove of Theorem 3.1. The
simple and singular cases are different so we split the proof in two proposition
analysing them separately.

3.1. The simple collapse. In this section we study the simple collapse
of graphs in the classical and non-classical case. The simple collapse does not
change the number of edges or the multiplicities of them and if we start from a
graph with trivial multiplicity, then we obtain a graph with trivial multiplicity.

G#0H = (G ⊔ H)k≡k+1 is an example of simple collapse where the cut
varieties are isomorphic. This is not a general fact:

Example 3.5. K3 could be seen as the collapse of 1 and 4 in P4. We
compute that

RP4 =
K[r1|234, r2|134, r3|124, r4|123, r12|34, r13|24, r14|23, r1234|·]

IP4

,

RK3 =
K[r1|23, r2|13, r3|12, r123|·]

(0)
,

where IP4 is generated by the nine quadratic equations in Example 3.3. Hence
Aff(P4) 6∼= Aff((P4)(1≡4)).

The matrix AG implicitly gives an order of the variables of Rn. In what
follow we use the letter p to denote the partition of a variable rp and the letter k
to indicate that rk is the k-th variable in this order.

Lemma 3.1. Let G be a graph and let {1, k} /∈ E. Let the collapse of
1 and k be simple. Then there exist a finite number of matrices C1≡k so that
AGC1≡k = AG1≡k

. If AG is made of the block matrices (F,N) where F (resp.
N) is the matrix of the exponents of the image of the feasible (resp. non feasible)
variables, then C1≡k is a 2n−1 × 2n−2 matrix and it has the following block form

C1≡k =

(

id
0

)
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P r o o f. By the assumption, {1, k} is not an edge, so TAG
= TAG1≡k

.

Fixing the collapse we fix the injection (̃.) : Rn−1 →֒ Rn where p is sent to pf .
The collapsing is simple and so one has

(7) φG1≡k
(rp) = φG(rpf ) = φG(r̃p).

Thus φG1≡k
factors through the composition Rn−1

(̃.)
→֒ Rn

φG→ TAG
. The injection

map (̃.) corresponds to the matrix C1≡k. ✷

Proposition 3.1. Theorem 3.1 holds for simple collapses.

P r o o f. Using the previous lemma we know that φG1≡k
factors through

the composition Rn−1
(̃.)
→֒ Rn

φG→ TAG
. If x ∈ RG1≡k

and φG1≡k
(x) = 0 then

φG(x̃) = 0, where x̃ is the lifting of x in Rn. This prove the (substitute) rule. The
(kill) property follows form the fact that pnf is a lifting that does not correspond
to any partition in G1≡k. ✷

3.2. The singular collapse. The notions of multiplicity and labeling
that we introduced deal with the singular collapse.

We note that before and after a singular collapse the domain changes
because the number of vertices change as well; the codomain changes because we
decrease the number of the edges.

Lemma 3.2. Let G be a graph and let {1, k} /∈ E. Let the collapse of 1
and k be singular and let the collapsing pairs of edges have the same labels for each
pair. Then there exist a finite number of matrices C1≡k so that AGC1≡k = AG1≡k

with the same form of Lemma 3.1.

P r o o f. The proof follows as in Lemma 3.1. (7) holds because the
feasible partitions separate or divide, at the same time, the collapsing edges. ✷

Lemma 3.3. Let G be a graph and let {1, k} /∈ E. Let the collapse of
1 and k be singular. Then there is a finite number of matrices C1≡k such that
(Rl′AG)C1≡k = AG1≡k

, where

• l′ is the labeling such that each collapsing couple of edges has the same
labels;

• C1≡k is the matrix of the collapse as in the previous lemma.

P r o o f. Without loss of generality we can assume that the singular
collapse involves only two edges: {1, l} and {l, k}. Any singular collapse splits
in two steps. We work in the non-classical setting, so it is possible that {1, l}
and {l, k} have the same label; if not, we relabel them with the same one, a. We
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call the new label l′. This gives a labelled graph (G, l′, A′, σ). Using iii.bis) of
Lemma 2.1 to the relabeling correspond a unique matrix Rl′ . We collapse the
two vertices of (G, l′, A′, σ). Using the previous lemma, there is a a matrix C1≡k

controlling the collapse. ✷ In other words, before we collapse the two vertices
in the codomain, that is we let the two edges ({1, l}, {l, k}) be considered as a
unique edge in TA; then we collapse the two vertices in the domain, that is we
select the feasible partition of [n− 1].

Proposition 3.2. Theorem 3.1 holds for singular collapses.

P r o o f. Without lost of generality we assume that the singular collapse
involves only two edges: {1, l} and {l, k}. Using the previous lemma we know
that φ(G1≡k ,l,A,σ) factors through

Rn−1
(̃.)
→֒ Rn

φG→ TG ։ TAG1≡k
.

Let a be the label of the two collapsing edges and let l′ be the new labeling. If
rq ∈ Rn, looking at the map φG, one sees that

(8) φ(G,l′,A′)(rq) =























· · · sσ(1,l)a tσ(l,k)a · · · q separates {1, l} but not {l, k};

· · · sσ(l,k)a tσ(1,l)a · · · q separates {l, k} but not {1, l};

· · · sσ(1,l)+σ(l,k)
a · · · q separates both {1, l}, {l, k};

· · · tσ(1,l)+σ(l,k)
a · · · otherwise.

After the collapsing of 1 and k, following the notation of the previous lemma, we
get the graph (G1≡k, l

′, A′, σ′). The collapse produces a change of the multiplicity
of the edge {1, l}: σ′(1, l) = σ(1, l) + σ(l, k). Let rp ∈ Rn−1, one has

φ(G1≡k ,l
′,A′,σ)(rp) =

{

· · · sσ(1,l)+σ(l,k)
a · · · p separates the vertices 1 and l;

· · · tσ(1,l)+σ(l,k)
a · · · otherwise.

The maps φ(G,l′,A′,σ) and φ(G1≡k ,l
′,A′,σ′) are coherent: if p = A|B is a (n − 1)-

partition, then φ(G1≡k ,σ)(rp) = φ(G,l,A)(r̃p), where r̃p is the usual lifting of rp.
There are no partitions p of [n − 1] such that p′ separates only one of the edges
{1, l}, {l, k}: this implies that the first case of the equation (8) is not possible
after the collapsing of 1 and k. ✷
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